
What Makes Up A Trace

A trace represents a log of events occurring during the execution of a

program. Think of it as a chain of operations performed during a specific

task. Every trace is uniquely identified by a UUID (Universally Unique

Identifier). This trace identifier allows you to differentiate between different

traces.

A trace consists of multiple transactions, and each transaction is composed

of multiple spans. Spans are the atomic units of work and represent

individual resources being loaded, UI component lifecycle events, file I/O

operations, and more.

A single event can cause a domino effect impacting every operation in

your application. Relying on logs alone, it can be next to impossible to

know if the root cause of an issue in one part of your stack is due to a

bug in another part.

Distributed tracing not only tells your team where an error or slowdown

is happening, but if it’s affecting other parts of your stack.

Part 1: Distributed Tracing 101

How traces are distributed

For distributed tracing to work, the application must propagate trace

context between transactions.

The trace context includes three values: the trace identifier, the parent

identifier (which corresponds to the span identifier of the parent span),

and the sampled value. The sampled value determines whether a

particular transaction should be included in the trace. By passing the

trace context, our services know to which trace they should append

their transactions and spans.

Visualizing distributed tracing

In addition to errors, distributed tracing also helps you identify performance

bottlenecks, because spans also hold values for how long they took. The trace

and its spans are visualized using a Gantt chart, so if a span takes longer than

you’d expect it, it’ll be obvious.

Distributed tracing is a powerful technique for understanding the flow of

requests through complex systems. With the right instrumentation and

monitoring tools, distributed tracing enables faster debugging and reliable

application performance

Want to learn more about distributed tracing at Sentry? READ MORE GET STARTED

Browser
Application

HTTP
Request Queue

Trace
Context

API Web
Server

Background
Task Worker

span_id:
abc123

span_id:
def456

span_id:
cba789

trace_id: fef676
parent_id: abc123

trace_id: fef676
parent_id: def456

https://sentry.io/features/distributed-tracing/
https://sentry.io/signup/

”Sometimes errors on the front-end have

roots on the backend. We use Sentry’s

tags and metadata about a request that

comes in to pass along a version of

distributed tracing to link these back.”

TONY STUCK
ENGINEERING MANAGER AT CLOUDFLARE

Part 2: Why you need it

Less time debugging

In Sentry’s State of Developer Happiness Survey, not being able to

identify the root cause of an issue has the worst impact on a developer’s

workflow.

Distributed tracing shows how different projects connect, so your team

can identify the source, not the symptom of an issue.

Scaling with microservices

Microservices architecture can give your team the flexibility to scale.

In a perfect world, APIs are well-defined, giving you insight into where

errors occur in any microservice. Unfortunately, this isn't a perfect

world.

Distributed tracing allows you to pass along unique identifiers and

metadata across different services and languages, so you and your

team can understand all the service-to-service chatter.

https://sentry.io/resources/state-of-dev-happiness/

Resource allocation

Know which parts of your app you need to invest in.

Whether you are deciding what needs more or less infrastructure

capacity or where your team should spend their time, distributing

tracing can help.

Want to learn more about distributed tracing at Sentry? READ MORE GET STARTED

Context you and your team need

Distributed tracing gives your team the cross-project insight needed to solve

for what’s causing errors and slowdowns.

As an engineering manager, distributed tracing helps you identify

cross-project and team dependencies. With a single view of how your services

interact, you can improve alignment with other teams and dev ops.

https://sentry.io/signup/
https://sentry.io/features/distributed-tracing/

